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Ardis & Hamlet -- Structure of Specifications and Isplementations 1

A data abstraction is a collection of sets togothcr vith a collection of
functions. An intuitive abstraction is unconnected with formalism: the sets

and functions are supposed to be known ab initio. Formal ideas enter wvhen the
abstraction is (1) . & cowcﬁ'l'l‘éﬁ%rouu written to carry out

the operations on actua a; and (11) , & mathematical
characterization gtvcn to precisely desc sets and functions. The
intuitive abstraction, an implementation, and a specification share a syntax

that names the sets and functions, and ;ivu the function domains and ranges
(as set names). The central question for any particular example of syntax is
vhether the semantics of the three ideas correspond: does the collection of
objects and operations a human being vas thinking of behave in the v.{ the
{mplementation’s data and procedures behave? Do the mathematical entities
behave as {magined? The questions can never be nnl\nndnsucluly. because
the intuitive abstraction is imprecise. On the other hand, precise comparison
of specification and implementation is possible.

This paper presents an algebraic comparison of specifications wvith
{aplementations. It is shown that these abstractions always overlap, and have
a common (lattice) structure that is valuable in understan 1:! the
modification of code or specification. er, in dealing with the precise
entities subject to fo analysis, must not lose sight of the intuition
behind thea. Therefore, our definiti are framed in terms of the intuitive
abstraction a person attempted to spedify‘or 1-;1-.:\:. and we refer the
algebraic ideas to this standard vhenever possible.

Section | presents the intuitive ideas\ of an abstraction, its
implementation, and specification. The ideas are essentially those of
{Hoare 72) and [Guttag 77]. Section 2 gives the common formalisam to be used,
the constant vord algebra. In Sections 3 and 4, this is applied to
lsaclllcntton and i{mplementation. Section 3 ;.:plorn the overlap between the
{deas, and sugpests that the precise connecti can shed light on the
imprec ise one that is really of interest: the intuitive abstraction in a
person’s aind. \

Pr————
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l. Data Abstractions

A data abstraction is viewed in three distinct wvays in this paper.
First, as an intuitive object, an abstraction is a collection of sets and
mappings among them, vith the sets and mappings having an intuitive existence
in the mind of a human being. (Perhaps this existence is Cod-given, as
Kronecker claimed of the natural numbers; perhaps it {s man’s handiwork; from
vhatever source we have it wvhole.) Second, an abstraction is wvhat a
programming language supporting type-encapsulation delivers. In the SIMULA
CLASS (Dahl et al. 70), the CLU cluster [Liskov et al. 77], and the SIMPL-D
CLASS [Cannon & Rosenberg 78], these languages provide the programmer with a
means of implementing vhat he had in mind. But once written, code has an
existence of its own, vhich need bear no relation to the ideas that remain in
the person’s mind. And third, an abstraction may be given a formal,
mathematical definition. Indeed, one branch of mathematics i{s devoted to
giving formal shape to intuitive ideas like numbers and sets. As anyone who
constructs formalisms knows, they also acquire a life of their own, and the
correspondence with intuition is a difficult one to establish.

The ideas of implementation and specification of an abstraction can be
made formal and precise. As formal notions, they are independent of each
other, and both are imperfect mirrors of an intuitive idea. The fundamental
definitions of this paper involve correctness -- the precise statement of wvhat
{t means for a formal {mplementation or specification to agree with intuition.
Such definitions necessarily retain a nonmechanical portion, but it is
{mportant to know, before we pass to analysis of the formal idea, exactly what
it {s supposed to be standing in for.

The three ideas of abstraction share a syntax that names the collection
of sets, names the functions, and gives the set names for function domains and
ranges. The definition of this gignature (Section 2) is unusual in that it
{ncludes only the names of the sets and functions, not those objects
themselves. Most definitions of computer science == the legendary l7-tuple of
automata theory for example == involve sets themselves. Here this is
{nappropriate, because to give a set is to give a meaning. The signature
consists of names; when objects are attached to those names, it is the
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definition of the abstraction itself. If the assignment to the names arises
from code, ve have the implemented abstraction; if it arises from some
mathematical description, the specified abstraction; and behind it all are the
sets and functions of the intuitive abstraction. Much of the power of formal
ideas comes from a convenient confusion of syntax with semantic substance: we
talk about the complete entity as if it had only syntax. This confusion is
too expensive here, because with three possible meanings, ve can never
explicate the relationships among them from their common names.

It {s i{mpossible to be more precise about the intuitive semantics that
might be assigned to a signature than to say that a human being imagines
particular sets and particular functions defined on those sets to be the

signature names. Then the intuitive abstraction i{s complete.

The best example of an intuitive abstraction is the natural numbers. The
set {s an infinite one, containing a distinguished element O , and there is a
generating function S (Successor) that produces the other elements, all
distinct: S(0), S(S(0)), ... Other less fundamental operations such as
addition and multiplication can be defined. These are all so familiar that to
name them i{s to feel that they are known and understood, exactly the character
that intuitive abstractions have. It {s important to separate the intuition
from any formal treatment (here for example the objects defined by the Peano
axioms), since the identity of formal and intuitive objects can never be
proved, and we want to avoid an infinite regress by grounding our definitions

on what a human being has in aind.

l.1. Imaplementation

For an i{mplementation we can be precise. A programming language is
involved, vith a well-defined semantics. The language has some built-in
entities, and the ability to define abstractions as extensions. The usual
situation is that there are a finite number of primitive types, along with a
fev fixed ways to construct new types from these. The language has a
procedure-definition facility, in which parameters and returned values may be
any of the built-in or constructed types. A data-abstraction-defining
facility allows a record of built=in types, along with a group of procedures,
to be encapsulated and called something like a "class.” The record
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constitutes the internal , hidden representation of the abstraction to dbe
defined , while the procedures alone are visidble from the outside, and permit
sanipulation of this data. In order to give examples, we must have a
particular syntax, so we construct one in a Pascal-like fashion. For example,

slasa Prize

3 old, new, borrowed, blue);
Value: in:. ’ - .

nﬂax(r. U: Prize): int;

a0d;

%ﬂd(l: Ant): Prize;

a0d claaa

The only aspect of such a program fragmsent that is not defined by the
programming language , independent of {ts abstraction facility, is the
restricted visidility of the unnamed record that begins the glasa. Within “he
2laaa this record takes the glass name (Prize in the example) and may de
sanipulated normally., Outside the glaaa the name may only be used to type
declarations; the outside progras say not refer to the components, Indeed,
the using program (s not to have any idea of what constitutes the internal
record, Objects of the defined type can only be manipulated dy passing thea
as parameters %0 the procedures within the glass. (It {s possidle to use the
defined type without declaring any objects., For the example adbove, it might
sake sense %o evaluate Val(Build(3), Build(-3)) in which the hidden data
storage has only a fleeting existence,)

In most of the existing data-adstraction programming languages the
internal record (here unnamed) retains values froa call to call of the
procedures encapsulated with {t, That i{s, a persisent internal state of the
2laaa exists, and each declared object of the new type receives a unique
version of this state. The actual situation can be captured formally by
treating the internal record as an additional phantoa paraseter and result,
for each procedure. PFor simplicity we instead define our Pascal-like language
so that {ts glaaa records are local: on each procedure invocation the record
comes into existence, and must de initialized to be used sensidly; no values
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are retained froa call to call.

The meaning of a new data abstraction is well-defined by the
prograsaing-language sesantics: the appropriate records and other builtein
quantities are manipulated by the procedures just as if the glaas boundaries
were not present. It remains only %o give the obvious correspondence with the
syntax of the signature of an abstraction: the record within a glaaa goes with
one set name of the signature, and the procedures go with the signature's
function names, with the domains and ranges matched up as declared. The
built-in types also match with set and function names of the signature, Once
a glass has deen defined in this way, the new type (defined by the glass name
and corresponding to the unnamed internal record) may be employed in defining
other classes just as the dbuilt-in types can. The most natural way to
construct a complex definition is as a strictly nested hierarchy, beginning
with a class that uses only built-in types; however, there is no reason to
fordid sutual interactions except those that are not well defined., Situations
in which nothing {s really defined can be detected in syntax just as
nonsensical recursive types are detected (van Wijngaarden et al. 76],

To discuss precisely the meaning of a glaaa the programming-language
semsantics aust take a precise foram, and we select that devised by Harlan Mills
(Linger, Mills & Witt 79), Each built-in primitive type corresponds to a set
of intuitive objects; for example, iniL %0 the integers, enumerated types to
finite sets, etc, Record types correspond to cross products of the sets of
their components. Procedures correspond to mappings among the sets to which
their parameters and result values correspond. Thus for example, in the glaas
Prize above the objects are integers Z , a certain four-element set W for
the enumerated type, and for the special record, pairs from Z x W . The
functional objects are

(val): (Z x W) x (Z X W) ===d> 2
(Build): 2 eeed>Z x W .

The felicitous notation of surrounding the procedure syntax name by bdrackets
to indicate the meaning function was invented by Kleene (Kleene 52]. The most
interesting and difficult part of the semantic definition of the programming
language is here omitted, in which it {s spelled out which particular
functions (Val] and (BPuild] happen to be. The particular ones are
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deterained by the meaning of the (elided) bodies of the procedures. Roughly,
the proper function is that one that agrees with the collection of
input-output values arising froa the procedure execution, To fill in the
details of the definition requires consideration of how each computational
feature of the language works. A dafinition along these lines for a simple
language i3 given in complete detail in [Hamlet 78],

A glaas of the prograsaing language can now be made to provide a
semantics for a signature, by matching up its types with the set names, and
{ts procedures with the function names, If this can be done consistently, the
class can be said to implement the signature, and give it a meaning, the
implemented abstraction, Any given signature can be i{mplemented in many ways,
because procedure bodies in the code are not constrained by the necessary
correspondence. Similarly, any glass isplemsents some signature, namely the
one in which the names are simply taken from {ts types and procedures., For
example, the glass Prize above implements a signature with two set names s
and © and two function names { and g , such that f: s x 8 -==> t and
B: L ===> 8,

The gorrsciness of an implementation must be relative to an independent,
{ntuitive {dea, If we have an intuitive abstraction in mind, then an
implementation abstraction with the same signature is correct if the meaning
of the prograsming-language entities mimics that of the intuitive ones
exactly, That is, each function computed by the program must agree with the
corresponding intuitive function. Unfortunately, this agreement can be
attained only through an additional intermediary, because the function the
progras coaputes, and the intuitive functions, have different domains and
ranges. In an intuitve abstraction with the signature of the above example ,
let S Dbe the set which is implemented in the gclasa record, and let I be
the integers (which int implements), Suppose that the function g: 1 ===> 8§
is the one we have in aind corresponding to the procedure Build., (These
symbols stand for actual sets and functions now, not for the content=-free
names of the signature.,) Correctness must then mean that (Build] -- the
funct ion computed by the procedure -- agrees with g . But (Build] does not
have S as its range; rather it has a cross product set that is the Seaning
of the glaas record., What is missing is a correspondence between elements of
the class record and elements of the intuitive set S ., We know that these
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sets correspond by name , dbut without an exact description of which element
corresponds to which, it is impossible to state the condition that [Build)
and g agree. In the example, the range of ([Build] is 2 x W , so the
missing intermediary is a mapping that associates an element of this set with
an element of S , Let this mapping be R: Z x W -==> S (for Representation
-- the programming-language pair represents the abstract object), Correctness
then means that (Build] and g agree as best they can: that given any

2 82 , the i{ntuitive function and the implementation produce results that
agree. In syambols for this case,

g(z) = R([Build](z)) ,

A more graphic way to present the same statement is in an japlemsntation
diagraa for Build:

(Build)

coceana z

f the diagram commutes , this part of the implementation {s correct,

When the formal definition of correct i{mplementation is presented in
Section &, we will see that the representation must dbe taken to de technically
more complicated, in order to capture the idea of ({mplementing one abstraction
in teras of another. In the example, the simplification {s that we have taken
I (the integers) to de the same set as a programming-language meaning , and
an intuitive abstraction, Where this simple correspondence fails, a cross
product of representation functions {(s required to construct the
{mplementation diagras. Behind the technical details lies the important idea
that in duilding a hierarchy of abstractions, lower levels may be i{mperfectly

understood, Formally, this {(mperfect understanding enters through selecting a
pecul iar representation to sap the lower-level abstractions within the
higher-level implementation diagras.

As the idea of "correctness" is framed above, it descridbes a relationship
among three independent ideas: an intuitive abstraction, a program, and the
representation that links their sets, In practice, the intuitive abstraction
is the starting point, and with some representation in mind, a prograa s
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written. What should not escape notice is that when the three ideas do not
match to yield technical correctness, the fault may lie with the code, but it
may also (independently) lie with the representation. For a fixed
representation there may be any number of correct implementations (including
zero); for fixed code there may be any number of correct representations
(ditto). In Section 4 we will see that in the practical case where the code
is fixed, a collection of interrelated correct implementations results as the
representation varies, Because this collection has a simple, tight structure,
we propose it as a good way to think about groups of abstractions,

1e2e Specification

By “"specifications® for a data sbstraction, we mean a mathematical
formalism that describes the sets and functions named in a signature, In
mathematics {tself, the discipline of "foundations™ is concerned with giving
formal meaning to intuitive objects, Set theory and number theory have been
m0ost extensively treated , using the tools of mathematical logic. Abstract
algedbra is also a foundational technique, but it permits use of definitional
phrases such as "the unique object such that,.." which cannot always be
justified Dy a construction, For the specifications to be used here, we
combine the algebdbraic approach with logical ideas to give the relationship
with intuitive abstractions,

Just as there are many prograsming languages that allow the
isplementation of data-abstraction extensions to their types, so there are
many candidates for an algebraic specification formslism, These all have
their bdasis in formal theories, These theories have a syntax of yell-formed
formulas (Mfs) that are constructed from given collections of symbols, Wfs
are a syntactic idea, in that no meaning is attached to a particular formula,
but “here are precise rules for a formula's construction.

From the sany choices available, we select a particular formalisa,
essentially that of [Guttag 77)], dbut without conditional axioms. The symbols
L0 be used are:

(1) Several collections of distinct variables, each unlimited.
Each collection will bde used with a set name from a signature (its
Lype) to construct a finite set of finite wfs, Thus in any
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particular case a finite number of variable collections, each
containing a finite number of variables, suffices,

(2) A collection of function symbols, whose number is similarly
unlimited/limited.

(3) A collection of special 2-ary equality-function names, each
having distinct domain D x D for some set name D , and a common

range (named Boolean), written (infix) =p .
(4) Parentheses and commas,

From these symbols the usual "terms" can be constructed, Each term has a
"type® that corresponds t0 a set name, A variable i{s a term, of the type
associated with its collection. A function name {s a term, of the type of its
range , provided that it {s followed by a list of parameters that are terms of
the appropriate types to match its domain, enclosed in parentheses and
separated by coamas,

Certain terms are distinguished as "axioms," These are of type Boolean,
having one of the special equality-function names as the outermost symbol.
All variables appearing in an axiom are universally quantified by default.

The way in which we use the formalism, and the general method of giving
{ts correspondence with intuition, do not depend on these details, but some of
vhe properties of the formalisa would change {f they were changed. In any
case, a specific forms is needed for examples,

For example, the following are axioms,

g8 2gu
f(t, ) 2t
(e, u) s £(f(t, v), v)

if for two set names T and U (along with Boolean B ), t 4{s a variable
of type T ,and u ,v are of type U ; and, there are two function names

f: TxU «==>T ,and g: ===>U ; with special equality functions

g9 T xT ===>B and 245: U xU =~=>B , In the second axiom, f(t,g) is
a term of type T , because { {s a function name with this range, t is a
variable of type T ; and g is a term of type U , because that {s its
range , and it has no parameters.




Ardis & Hamlet -~ Structure of Specifications and Implementations 10

The correspondence betwueen a signature, with its set and function names,
and a set of axioms, is obvious. Should it happen that there is a consistent
correspondence between the appropriate names, we say that the set of axioms is
a apecification for the signature. This notion is the analogue of
"{mplementation” of a signature without reference to any intuitive meaning;
and as in the former case, since the substance of the axioms is not
constrained , many axiom sets specify any signature, and any axiom set
specifies some signature.

The meaning of a set of axioms, which defines a specified abstraction
analogous to the i{mplemented abatraction that a programming language defines,
i{s not s0 well known in computer science, This meaning i{s supplied by the
concept of a "model" from mathematical logic., By identifying the strictly
formal names in axioms with particular set elements and functions, and in
particular ident{fying "Boolean" with the set {irue, false! and the special
equality functions with actual equality relations, we can talk about the idea

of "truth.”

REFINITION -- An Jplarpretation of a set of axioms is a mapping that
assigns an actual set to each type, and actual functions over

appropriate cross products of these sets to the function names., In
particular , Boolean must be assigned (irue, false! , and each "="
must be assigned that function which takes the value irue if and
only {f the equality relation for the appropriate set holds, An
axiom i{s Lrue in an interpretation if and only if no matter which
set elements under the interpretation are taken for {ts variable
symbols, the functions of the interpretation, applied to these
elements , do yield irue for the outer "=" function. The sets and
functions of an interpretation that makes every axiom in a
specification true, {s called a ggdel of that specification,

We take this idea as the semantics for specifications: the specified
abstraction is any model of the axioms,

For a particular signature, we can now consider another pair of mnmu‘.
just as we did for implementation., A set of axioms that define a specified
abstraction can be said to bde gorrect relative to another, intuitive
adbstraction for the signature, if the intuitive abstraction agrees with those

A
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axioms, The technical form of this statement is just that the intuitive
abstraction is one of the models for the axioms, That is, there must exist an
interpretation mapping that carries the axiom formalism onto the intutive sets
and functions, such that the axioms are true in that interpretation,

An interpretation is as essential to correctness of a specification as a
representation i{s to implementation. (Indeed, [Hoare 72) uses the word from
logic for the latter idea.) As before, it can happen that axioms fail to
correctly specify a given {ntuitive adbstraction, not because of an error in
the axioms, but because the correspondence of the interpretation is in error.
However , there (s less leewvay for committing interpretation blunders in
specifications , because the interpretation domain has no named structure, A
representation sapping carries a complex record object to an intuitive one,
and the map (s likely %o depend on the record structure details; the
interpretation maps only homogeneous sets,

1.3. Implementation vs, Specification

Data adbstractions are (mplemented or specified by people deginning with
an intuitive {dea of the objects and operations desired, The definitions of
correctness above relate the resulting formal objects to what a person had in
mind., But in practice, only the formal objects exist for analysis, We raise
tne question of the extent to which they overlap:

Suppose that a certain glass implements a number of intuitive
abstractions correctly, and a certain set of axioms correctly
specifies a number of {(ntuitive adbstractions, If they share the
same signature, what (s the relationship between the classes of
intuitive abstractions they correctly capture?
This question i{mplicitly raises the deeper question of the structure of the
correct intuitive abstractions for a given i(mplementation or specification,

Because the details of the formalisas for {mplementation and
specification are so different , wve cannot compare theam without a common
theoretical framework. The remainder of this paper is devoted to analysis of
such a framework, a word algebra of constants,
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2. Word Algebra

The syntax common to an intuitive abstraction, an implemented
abstraction, and a specified abstraction is captured in the collection of set

and function names called a signature.

DEFINITION -~ A signature is a pair (S, F) consisting of a finite,
nonempty collection of set names S (the sets are called sorts)
together with a finite, nonempty collection of function names F "
the function domains being cross products of sorts, and the ranges
sorts. The tuple of types of the parameters of a function is called
its arity. Function names are considered to include arity
{nformation. The notation "f: D =—> R" indicates that D s the
domain of f and R {ts range. When the arity is {mportant, D
will be written out as a cross product to show it. One sort is the

distinguished sort-of-interest.

In talking about a signature, {t is important to remember that only names
are i{nvolved. For example, the signature gives not the sorts, but only the
sort names. The distinguished name of the sort-of-interest i{s intuitively the
name of the abstraction itself; the objects of this sort are the cnes to be
defined by the abstraction that uses the names from the signature. Fig. 2.1
contains the signature for the List data abstraction, an example we will use

{in later sections.
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SORTS
List
Ele
FUNCTIONS
tyl: -=> List
(I:o.l'icf List x List =-=> List
Head: List -=> Elt
Tail: List -=> List
Makelist: Eltc -=> List
One: -> Elt

Figure 2.1 The signature of the List data abstraction
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Given a signature of a data abstraction there exists an algebraic

structure of possible meanings of that signature, a1 lattice of semantic
interpretations derived solely from the signature.

DEFINITION -~ The constant word algebra W, of a signature (S, F)
is the set of all constants formed as follows:

(1) Each O-ary function f: ===>S, in F is a constant word of
type Sl s

(2) 1f f£: S x...xS5,_

V]seseyWo_| are constant wvords of types S,, ..., S;_) , then

-——> Su is a function in F and

] “"1"""1:-1) is a constant word of type S .

(3) Nothing else i{s a constant word.

For example, given the signature of Fig. 2.1, the following are constant
vords:

EmptyL
Makel ist(One)
Conc(Makelist (One) ,Makelist(One)) .

An algebra is a pair (S, F) , vhere S 1{s a collection of sets, and F
{s a collection of mappings between the sets. The sets of ¥, are named by
the sorts of the signature and the mappings are named by the function names of
the signature. The reason for defining W. 1is to have a name for each value
of each sort. No matter which viewv of data abstractions is taken (intuition,

specification or {mplementation), one has to have a way of describing the

elements of sorts. W, provides a name for every element that is the result
of some sequence of operations. If one’s intuitive view of a data abstraction
includes elements of sorts that cannot be generated by sequences of
operations, then W, cannot describe those elements. However, programming
languages that support type encapsulation do not allow implementations of such

data abstractions. (Initialization of variables is an operation in our view.)

2.1. Equality in Wc

Tvo different sequences of operations may be intended to produce the same
value, the same element of a sort. The two corresponding elements of W,

olidons S e
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should be equal.

X :

(1) x~ x
() It =
3 If =

in section &,

(Reflexive)

y and y "z then x ~ z . (Transitive)

A congruence re on on an algebra (S, F) 1s a set (") of
equivalence relations, one relation defined on each set Sl s,

with the substitution property:

(4) For all functions f: sl""“sn-l —> §
Xy T¢ ¥y » vhere i = 1,...,0~1 , implies
f(‘l..oo.gn_l) -n '(yl""’yl‘l-l) .

Nov that we have the terminology, ve say precisely vhat we mean by a
r semantic interpretation.

DEFINITION — A semantic interpretation of a signature is a
congruence relation on its constant vord algebra W. . We say that
tvo values of W. are equal in a semantic interpretation vhenever

they are related by that congruence relation.

We have deliberately chosen an algebraic definition for "semantic
{nterpretation,” because we wish to describe intuitive data abstractions that
have been correctly specified dy algedbraic axioms. Perhaps it is a surprise

that this definition applies equally well to {mplementations, as we will show

Each semantic interpretation, becasuse it is a congruence relation,
defines a unique algebra, called a guotient algebra. One such quotient
algebra behaves just like any intuitive data abstraction for a signsture.
That is, it has the right number of elements in each sort, and each function
produces the right value for each set of input values. We will abuse the
terminology slightly, and refer to a congruence relation as a surrogste for a

Ardis & Hamlet -- Structure of Specifications and Iaplementations 15

We call such intentions semantic interpretations. In order

to define this ides precisely ve need some mathematical terminology.

DEFINITION -- An equivalence relation ~ over a set X 1is a binary
relation satisfying the following properties, for all x, vy, z in

then ¥ ~ x . (Symmetric)

L e e Lo Ao i

I
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data abstraction that one might have i{n mind. It would be more precise to say
that the quotient algebra defined by the congruence relation is the surrogate.
Where there {s no chance of confusion we will even drop the "surrogate for"
terminology and use the term "semantic interpretation” when we mean an
intuitive data abstraction. We summarize these conventions as follows:

ASSUMPTION -- Every intuitive data abstractiom with signature S
can be modelled by a quotient algebra that is defined by a
congruence relation on the constant word algebra W. of S . That
is, every intuitive data abstraction has a surrogate.
2.2. Structure of Semantic Interpretations
Each congruence relation on W. may be thought of as the set of all
pairs of constants that are equal in that relation. We thus order congruence
relations by set containment: a congruence relation is contaf «d in another
congruence relation {f and only {f it i{s a subset of the other. A semantic
interpretation is contained in another semantic interpretation if all the

constants that are equal in the first are equal in the second. To capture
this ordering relationship precisely wve need more terminology.

DEFINITION -- A partially ordered set (A, <) is a set A with a
relation < satisfying the following properties, for all
a, b, ¢c & A :

(1) a<a. (Reflexive)
(2) a<bd and b < a implies a = b . (Anti{symmetric)
(3) a<b and b < ¢ implies a < c . (Transitive)

A lattice 1is a partially ordered set in which every tvo elements
have a least upper bound, called the Join, and a greatest lower

bound, called the meet. A complete lattice L is a lattice in
wvhich every subset of L has a join and meet. A complete

sublattice is a subset L of a lattice M closed under the join
and meet operations defined on M , operating on subsets of L .

The main result of this section is the following theorea.




2.3.

Ardis & Hamlet -- Structure of Specifications and Iaplementations 17

IHEQOREM -~ The collection of semantic interpretations of a signature
forms a complete lattice, denoted Ly

PROQF -- By definition the collection of semantic interpretations of
a signature i{s the collection of congruence relations on the word
algedbra W, . The collection of congruence relations on an algebra
ordered by set containment is known to be a complete lattice
(Birkhoff & Lipson 70], with meet and join operations set
intersection and congruence closure union. The top element of this
lattice {s the trivial algedra, containing one element in each sort,

Example

As {llustration, a part of the lattice of semantic interpretations of the

List signature {s shown i{n Fig, 2.2, Even for such a small example, Ly
like W, , is (nfinite i{n size. However, the portion shown is enough for our
purposes. Later examples will rot need any of the missing pieces. What is
shown {s a complete sudblattice of L, + Only four constants froa W, and
their relationships are shown,




e
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(A,8,C,D)

(A)
(B)
(<)
(D)

EmptyL

Makeiist (One)

Conc (Makeiist (One) ,Makeiist (One))

Conc(Conc (Makeiist (One) ,Makeiist (One)), Makeiist (One))

oONm>»P
“naen

Figure 2.2 A portion of the liattice 1Ly for List
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Each box in Fig. 2.2 represents a semantic interpretation. All equal
constants under that interpretation are enclosed in parentheses. Note that

single letters are used as abbreviations. For example, "(A,B)" means that the
constants "EmptyL" and "Makelist(One)" are equal. Each arc in the lattice is
a containment relationship: the semantic interpretation of the higher box
contains the sesantic interpretation of the lower box. (Since there i{s only

one element in sort Elt, only the values of type List are shown in this and
later lattice diagrams.)

To see vhat the complete lattice I, 1looks like, imagine an infinite
number of levels of boxes, each level consisting of an infinite number of
boxes. Each box on each level (except at the very top and bottom) is
connected to some, but not all, of the boxes on the next higher level and the
next lower level. At the very bottom is one box connected to all of the boxes
on the level immediately above it, just as the top box is connected to all
boxes on the level immediately below it.
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3. Specification

The formal theory descridbed in Section 1.2 permits us to write
| collections of axioms using arbitrary variable symbols, function symbols, and
F special "equality" function symbols. In defining the notiom of the "type" of

each term, a collection of set names i{s involved, associated with each

collection of variables, and with function domains and ranges. The syntax of
'f the wfs of this formal theory can be made to match the syntax of a signature,
:' setting the stage for giving a signature the meaning of a specified

abstraction.
DEFINITION -- A signature (S, F) (s specified by a set of axioms,

1f and only {f each type involved in the axioms corresponds to a
member of S 1{n a consistent way (the consistency enters when
function domains and ranges are considered), and each function

symbol in the axioms corresponds to a member of F .

A signature cannot be specified unless it thus contains a sort name for the
Boolean required in the axiom formalism, and all the necessary equality

P‘ functions for {ts sort names. (S{nce the types of the equated terms make
clear wvhich equality is iavolved {n any axiom, we henceforth drop the type
subscript, and vrite simply infix "=")., With these minimal restrictions, any
signature has many specifications, and each set of axioms has a "natural”
signature that it specifies, in which the sort and function names are taken
from its types and function symbols.

For example, Fig. 3.1 contains a specification whose natural signature

has two sort names and five function names as indicated.
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SORTS
List
Elet
FUNCTIONS
tyl: -=> List
g:::! List x List =-=> List
Head: List -=> Elt
Tail: List -=> List
Makelist: Elt -=> List
One: -=> Elt
AXIOMS
Head hzt L) = One
Head (Makelist (X)) = X
Head (Conc (Makelist (X), Makelist (Y))) = X

Tatl (ht‘{l.) = Em t L
Tail 5 fat (X) ‘.
Tail (Conc m.uuo: (X). kelist (Y))) = Makelist (Y)

Makelist (ErrorN) = Eaptyl

Conc
Conc ht g ptyl) = Hllulllt (X)
Conc Phkolut Conc Makelist hhlllt }Z;))
Conc (Makelist !‘hhlllt Y
Cone (Conc smuuu 5 , Makelist ;
Conc (Makelist (X), Makelist

Figure 3.1 Specification of List data abstraction
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J.1. Correctness

As described in Section 1.2, we take the meaning of a specification to be
any model of the axioms, making it possible to define agreement with
intuition:

DEFINITION == Given an intuitive data abstraction A and a set of
axioms that specify the same signature, wve say that the axioms

correctly specify A 1if and only {f A 1is a model for them. That
is, if and only if there exists an interpretation of the axiom

formalism into A that makes them all true.

Because an intuitive abstraction and a specified abstraction are required to
share a signature, the only vay that the former can fail to be a model is by
the assignment chosen for the function symbols: {f the intuitive functions do
not in fact satisfy the axioms, the specification is incorrect.

A specification contains semantic information in the form of axioms. The
axioms may be viewed as a list of requirements that must be satisfied by any
semantic interpretation of the signature., It {s our view that these
requirements are minimal, but not maximal conditions. A specification does

not define a unique semantic interpretation, but a collection of semantic
i{nterpretations.

3.2, Semantic Interpretation

In order to describe what a specification means, ve need to characterize
all the semantic interpretations that agree with the specification. Some
interpretations must be ruled out, because they do not equate constants that

the specifications asserts are equal. The minimal set of equal constants that
must be in a semantic interpretation that ageees with a specification are in

the relation speceq.

DEFINITION ~- A derivation from a specification S 1is a finite
sequence of equations formed as follows:

(1) w=w , vhere v {s any constant of W. , i{s an

equation.
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(2) If w| = wy 1is an equation then w; = w; 1s an
equation.

(3) 1f w) =w,; and wvw; = w3 are equations, then

¥) = vy 1is an equation.

(4) An equation is formed from an axiom of S by an
assignment of constants to variables, vhere each
occurrence of a variable x of type S in A |is

consistently replaced by a constant v of type S .

(5) 1! vl - 'z lﬂd t(oo-.c.-oo) - f(o..‘c'ooo) are
equations, and ¢ is of the same type as w; and v, ,

th‘n t(oo-.vl.o'c) - f(co.'vz.ono) t. an ‘qu.tion.

(6) Nothing else {s an equation.

The last equation {n a derivation is the equation derived. Two
elements w; and w; of the constant word algebra W, of a
specification S are in speceq if and only if the equation

W) = vy can be derived from S . We say that v, and w;

are equal in speceq .

Our intuitive view of specification of a data abstraction is: two values

of a sort are equal because they are identical, because an axiom asserts they

are equal, or because they were created by substitution of equal values for
the same part of equal values. The rules for forming equations in a
derivation capture just those equalities: rule (1) for identical ‘ues, rule
(4) for axioms and rules (2), (3) and (5) for substitutions.

LEMMA -- Speceq {8 a congruence relation on W, .

PROOF =- Rules (1), (2) and (3) for forming equations in a
derivation are just restatements of the reflexive, symmetric and
transitive properties of an equivalence relation. Thus speceq |is
an equivalence relation. To show that {t i{s a congruence relation
we must demonstrate that the substitution property holds. Suppose
constants w; and v, of type S; are equal in speceq . Then
there exists a derivation of w; = w; . Let

£: S XesexSyXeeeS | ===> S, be a function. The constant word
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algebra W, contains all values of f , and all the elements of
"c are constants. So, there exist constants ClaeessCpoy of
types S),...,5,.] and a constant

f(Cl.-.-.cl.ooo.Cn_l) .

Continuing from the derivation of w) = wy , by rule (1) we derive
the equation f
f(CppevesCirencsCna)) = £(CppeeesCypeneysCpay) » '
Finally, ve derive
ElC pena W yenescpy) = £(Cpeee Wyiene,cpy)
by rule (5). ::!
So, speceq 1is a semantic interpretation. Next, we show that {t is correctly
specified.

LEMMA -- Given a specification S , {ts semantic interpretation
speceq is a model for S .

PROOF — This i{s one place where we cannot afford the confusion that
might arise from treating a congruence relation, speceq , like an
algebra. Let us call the quotient algebra defined by speceq
specalg . The sets of specalg are sets of equivalence classes of
elements of W. . That {s, all elements of W. that are equal in
speceq are in one equivalence class in specalg . The mappings of
specalg are functions defined by relations in speceq : Let %
£: SyXesexS | ==> S, be a function in the signature of S . Let |
Sy = ('lj) for { = l,...,n . The set of all pairs

v,,) in speceq defines a function f° in

(f pee ey
o 3

n-lj)
specalg .
We now show that specalg 1is a model of S . Let w; = w; be
any instance of any axiom of S formed by consistently replacing

all variables by constants of W. . By rule (4) for forming

equations, w,; = wy can be derived. That means that the functions
of specalg whose names appear in v, and v, operate in such a

wvay that "v; = v," has tha value "true" in the Boolean sort of

specalg . So, specalg is a model of S . ol
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3.3. Structure of Semantic Interpretations

The congruence relation speceq 1is just one semantic interpretation of a

signature. There may be others that agree with a specification.

DEFINITION ~- A congruence relation is said to satisfy a

specification if and only if {t contains (in the set-theoretic

sense) the congruence relation speceq for that specification.
We can nov characterize correct semantic interpretations.

THEOREM -- Given an intuitive data abstraction A , its surrogate
semantic {nterpretation A’ and a specification S with the same

signature, A {s correctly specified by S {f and only {f A’
satisfies S .

e i ae L M L s L

PROOF -—— First, we show that satisfying S {mplies correctness.
Let w, = v, be any instance of any axiom of S formed by
consistently replacing all variables by constants of W. . The
equation "v, = v," can be dertved by rule (4) of the definition of

derivations. So, w, and w; are 2qual {n speceq . A’
contains speceq , so v; and v, are equal in A’ . Thus, every
axiom {n S {s true in the {nterpretation A’ . Therefore, A 1is
correctly specified by S .
Now we show that correctness {mplies satisfaction of S .

Suppose the contrary: A {s correct, but A’ does not contain

speceq . Then, there exists an equality w; = w, {n speceq that
i{s not in the relation A’ . Let EjveeesEy be the sequence of
equations in a derivation of w; = w, . Suppose an equation

Eq ¢ vy = vy is constructed by rule (1). Then the equality
"vi = v;" is true {n A" , because A’ s a congruence relation and
admits all {dentities of that form. Similarly, {f !1 is
constructed by any of the rules (2), (3) or (5), then it i{s a
statement of equality that must be true in the congruence relation
A’ . Suppose E{ 1s constructed by rule (4). Then, E, 1is
formed by substituting constants for variables i{n an axiom of S .
But, every axiom {s true in A’ , because A {s correctly

specified. In every case, E, 1{s a statement of equality that must




semantic interpretation satisfies the specification, then all of the values
that the specification asserts are equal must be equal in the intuitive

abstraction. However, there may be values that are equal intuitively, but are

r——
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be true in A’ . Therefore, the last equation, "v) = w,", must be

true in A’ . ool

When i{s an intuitive data abstraction correctly specified? 1If the

not necessarily equal according to the specification. Even though the j

specification does not completely describe the abstraction, nothing in the

still correct. |

the use of data abstractions. In practice, the use of an abstraction will

almost never require every distinct value of each sort. Those values that are

specification is contradicted. In this case we say that the specification is 1

Our acceptance of "incomplete" specifications as correct is motivated by

never used might just as wvell be identified with one value {n each sort that

{s used. !

use of a data abstraction that does not distinguish between any values in any
sorts. For example, an abstraction that includes i{nput/output operations may
be used {n a program only to read and write values of that abstraction. Such
use i{s characterized by the trivial (nterpretation that equates all values of
each sort. Even the values "true" and "false" of the sort Boolean are equated
i{n this {nterpretation. Although the distinctions that the specification
makes betwveen values of this abstraction are not made by the use of the
abstraction, it would not be right to say that the specification is incorrect.

correctly specified data abstractions of a specification.

A particularly perverse case of correct incomplete specification i{s the

With the help of the previous theorem we obtain a characterization of all

THEOREM -- The collection of data abstractions that are correctly
specified by a specification form a complete sublattice of L, . We

denote the sublattice L. .

PROOF == By the previous theorem we may argue about correctly

specified abstractions i{n terms of the surrogate semantic
{nterpretations that satisfy the specification. Each semantic

interpretation is a congruence relation on W. . The congruence

BRPRoT
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relations that satisfy the specification contain the congruence
relation speceq , dy definition of satisfy . The elements of L'
are contained in L_, because they are all congruence relations on
He + Therefore, the lattice operations of L, apply for L. » l
We need to show that the meet and join of every subset of L'
{s contained in L, . The intersection of any number of sets
containing a common subset contains that subset. So, the meet of
any number of congruence relations containing speceq is a
congruence relation containing speceq . Similarly, the congruence
closure union of any number of congruence relations containing

sSpeceq (3 a congruence relation containing speceq . b

3.8, Example

Fig. 3.2 depicts the lattice Ly of the List data abstraction specified
in Fig. 3.1, The semantic {nterpretation speceq {3 represented by the box
at the dottom of the lattice, Under this interpretation there are three
distinct values of type List: “"EmptylL ," "™Makelist(One) ,” and the value
"Conc(Makelist(One) Makelist(One)) ," which {s equal %o
"Conc(Conc(Makelist(One) Makelist(One)) Makelist(One))." These last two
values are equal decause of axiom L!1, (Recall our convention not to show the

single value "One"™ of sort Elt (n any of the bdoxes,)
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(A,8,C,D)

(A) (B)
(8,C,D) (A,C,D) (C.D)

(A)
(8) |

EmptylL

Makeiist (One)

Conc (Makeiist (One) ,Makeiist (One))
Conc(Conc(Makeiist (One) ,Makeiist (One)),Makeiist (One))

ONwW
L BB

Figure 3.2 The liattice L. for List
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The semantic interpretation represented by the box containing
"(A),(B,C,D)" distinguishes between the empty list and all other lists, but
makes no other distinctions: all nonempty lists are the same. This
{nterpretation satisfies the specification, because all of the distinctions it
makes are made by speceq . But, some distinctions made by speceq are not
made by this interpretation. Specifically, speceq distinguishes between
"Makelist (One)" and "Conc(Makelist(One))."

Unlike the lattice L, of this signature (Fig. 2.2) Lg 1is finite. In
fact, there are only five semantic interpretations in L . Note that these
five interpretations appear in L, 1in the same relationship to one another as
they do in Lg . Why (s L, 80 much smaller than L, ? The specification of
the List data abstraction defines a very small speceq interpretation. For
exanmple, all vords of the form:

Conc(Conc(...Conc(Makelist (One) ,Makelist(One)),x)),x3)e.0)
vhere the x, are either "Makelist(One)" or "EmptylL", are equal to the word:

Conc (Makelist(One) ,Makelist(One)) .

All wvords of the form:

Conc (Conc(...Conc(EmptyL, EmptylL),...EmptylL)
are equal to the word "EmptylL". Because speceq collapses an infinite number
of constants from W. into four equivalence classes, there are only four

other interpretations that can contain speceq .

All the semantic {nterpretations of a data abstraction that satisfy a
specification are correctly specified. However, all but speceq are
over-specified. That is, given one of these over-specified interpretations,
there exists a specification S ° with semantic interpretation speceq’ equal
to that interpretation. The lattice L,° of S° {s smaller than the

original lattice L In the example, the semantic interpretation

g °
represented by the box containing "(A),(B,C,D)" satisfies a specification S’
vhose lattice L,° contains just the two interpretations labelled
"(A),(B,C,D)" and "(A,B,C,D)." The semantic interpretation represented by the
box containing "(A),(3),(C,D)" {s under-specified by S’ , dbecause it is not
{n the lattice L,° . Under-specified data abstractions are incorrectly
specified. To reiterate, a data abstraction is over-specified by a
specification {f {t {s in the lattice Lg of the specification but is not the
semantic interpretation speceq of that specification. A data abstraction is
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under-specified 1f it is not coantained in the lattice Lg of that
specification.

3.5. Relationship to Other Work

The idea of using a lattice to capture the structure of semantic
interpretations of algebraic specification of data abstractions is not new.
(Giarratana et al. 76) and (Polajnar 78] describe similar lattices, but with
much more attention to mathematical details. A difference between Ly and
their lattices {s the presence of different interpretations of sorts other
than the sort-of-interest in L, . Consequently, Ly 1is much bigger,
containing such degenerate interpretations as the trivial interpretation,

vhich equates all values to one another in each sort.
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4. Ilmplementation

The Pascal-like programming language indicated in Section l.l allows us
to write class definitions containing certain typed objects (in the
programming-language sense), and with procedures using these types as

parameters and results. The language syntax can therefore be matched to the
syntax of a signature in the obvious way.

DEFINITION -=- A class definition involving a collection of types

T , and procedures P typed from T and using T parameters, is
said to implement a signature (S, F) 1{f and only if a
correspondence can be established between the names in S and F
and the {ntuitive objects that are the meanings of the types and

procedures in T and P . The correspondence must be consistent in

assigning procedures with typed parameters to function names with
corresponding sort domains, etc. The sort-of-interest must
correspond to the type with the class name.

As defined, a given class implements a natural signature wvhose names are
taken from the programming-language syntax itself. Any given signature has
many {mplementations, corresponding to the arbitrary content of the
programming-language procedures, and to the arbitrary content of the record
that represents the sort-of-interest. For example, the class in Fig. 4.1
implements the same signature specified by the axioms of Fig. 3.1.
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class List

L1t et th —TL;
| end record '

t_ge_i EmptyL: List;
esult: List;

rgsgig
aTues: {_n%:..l.uutn] of Elt;

sult.Listlength := 1;
Result.Listscart := 0;
Result.Values (0] := [;
EmptyL := Result;

end;

func Conc (First, Second: List): List;

v
!{nulz: Lisc;
Pos: int;

begin
'ﬁlutkul (First, Emptyl)
hen Conc := Seco

ListEqual (Second, Emptyl)
onc := First;
Res .Liststart := 0;
Result.Listlength := 0;
Pos := First.Liststare;
while Result.Listlength < First.Listlength do

ult.Values [Result.Listlength] := First.Values (Pos);
Pos := Next (Pos);
Result.lListlength := Result.Listlength + 1;

':%54°=ls.§lmilt'“§'t.r!t\; r 11etl N
while Result.Listlength < rst.Listlength +
Second.Listlength) and
Result.Listlength < 3 do

ult.Values [Result.lListlength] := Second.Values (Pos];
Pos := Next (Pos);
Result.Listlength := Result.Listlength + 1]

Cogﬂ' « Result;
end;

Head (L: List): Elt;
.Listlength = 0
Head := One
gﬂg Head := L.Values (L.Liststart];
ead;

Figure 4.1 Implementation of List data abstraction
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%Tlu (L: List): List;
esult: Lisc;
Pos: int;

t := EmptylL;
Pos i= Next (L. Listetart);

%::ult.uulmth < (L.Listlength - 1) do
t := Conc (lclnlt.
Makelist (L.Values [Pos)));

Pos := Next (Pos);
Tuﬁig- Result;

func Makelist (N: Elt): List;
Ei“ult: List;
be 1 2
sult := t
an.lht - ’nI:.

func Next (Pos: {nt): int;

os = Listsize - |
h Next := 0
Next := Pos + |;

end;
ListEqual (First, Second: List): bool;
irst.Listl th - l _;
Second.List -

then Nr-t l.utl. th =
R Seco .uutlmth

h {.:othul '-ﬂ.
st :
mﬁ%! nuu (Firae) ad gs.cow and 1

ListEqual (Tnu First)
Tail (Second}

E b et o7 A

One: Elt;

end; i
end class

Figure 4.1 (cont.) Implementation of List
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In the syntactic correspondence between a signature and class code, part
of the information of the program goes unused: the details of the record type
corresponding to the sort-of-interest. The class name is made to correspond
to this distinghished sort, but the record components may be anything. Thus
to assign a meaning arising from the code, the correspondence between the
cross-product language-meaning of this record and the sort-of-interest must be
given. This correspondence is of course arbitrary, since only its domain (the
cross-product record set) appears in the program. Thus although the program
meaning is unique, defined by the semantics of the programming language as
extended in Section l.l, the abstraction defined is not unique, since each

different representation mapping with the proper domain yields a new meaning.

4.1. Correctness

The simplified discussicn in Section l.l presumes that when a base type
of the programming language appears in the signature, the intuitive set of
this sort, and the meaning set from the language, are identical. In that case
nothing like a representation mapping (other than the identity) is needed for
base types to define i{mplementation diagrams and correctness. This simple
viev does not correspond very well vith reality, and does not extend to
hierarchical definition of abstractions. When we use (say) int in
implementing some abstraction, it is seldom true that we are really using the
full set of integers -~ more likely some special subset is really involved.
(For example, vhen the int quantities are serving as array subscripts, the
actual meaning set i{s probably limited to the legal bounds.) And, vhen one
previously defined type is employed in the definition of another, which of the
many possible representations of the earlier type record {s intended? Nothing
in the syntax can say. For these reasons we are forced to define correctness
of an implementation in terms of a collection of representation functions,
carrying each one of the meaning sets from the language onto an intuitive set.
At each level, only the sort-of-interest appears as an explicit tuple of

valuves; the other sets have their representations, however.

DEFINITION == Given a class definition and an intuitive data
abstraction wvhose signature the class implements, and representation
functions mapping the meanings of the class types to the sorts, each

procedure of the class has an implementation diagram, as follows:
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Let p be a procedure of the implementation corresponding to
function name f: A} X ... X Ay ===> A} of the signature, A) the
sort-of-interest. (Other cases are similar, mutatis mutandis.) Let
the meaning of the class record be the set D} x ... x D, , and let
Cy be the meaning set of the implementation corresponding to Ay ,
for {1 ¢41. Llet Ry: Cy =-==>Ay , except that
Ry: D) x eee x Dy ===> A, . The implementation diagram for p
is:

£
Al X sese X M ———— Al

- - -

R Ry ( l R,
s D
ol X coe X Dn‘ oo ‘Cl —> 1 X s ‘Dn

The upper part of the diagram describes the intuitive abstraction,
vhile the lower part describes the meaning of the implementation.
We say that the implementation {s correct i{f and only if all of the

implementation diagrams commute.

An implementation abstraction can fail to be correct for an intuitive
abstraction only through the semantics of functions and representations.
Syntactically there can be no failure to correspond because the abstractions
share tiie same signature. A semantic error in a function is straightforward:
the intuitive function is simply not (p] , for the procedure p to which it
corresponds. However, it is easy to lose sight of the fact that this
statement relfes on a representation function to bring the intuitive and
implemented domain/range into line. The correctness of [(p] never appears in
{solation, only in composition with the necessary representation conversions.
There is, however, a case in vhich (p] seems to stand on its own: wvhen the
representation functions are all {dentities. If every intuitive and
implemented object {s the same, then the only errors can be in the code
vritten to manipulate these objects. This special case probably looms larger
in our aminds vhen we think about implementations than it ought to: one of the
virtues of implementation is that non-identity representations are convenient,

and safely hidden in the encapsulated type definition.
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4.2, Semantic Interpretation

Just as a specification defines a class of semantic interpretations that
satisfy the specification, an implementation defines a class of semantic
interpretations that satisfy the implementation. In fact, most of the
statements ve made about specifications in the previous section can be made
about implementations. This {s not hard to explain. Specifications and
implementations are both descriptions of the same object, an

intuitivel y=understood data abstraction.

The first step in describing semantic interpretations that satisfy an
{mplementation is to define the concept of a derivation for implementations.
Rule (4) for forming equations in a derivation (section 3.2) uses an axiom to
generate an equation. There are no axioms in an implementation, so this rule
can not be used. However, the code for functions that appear in a constant
con be executed, and the result can be checked to see i{f it is the same as

other execution results.

DEFINITION -- The eval function is a mapping from W. to the
intutitive programming-language meaning sets, using the meaning of
the functions appearing in the constant:

eval(f(wy,eeu,wy)) = [£]([wp)yeea,(wy])
We can nov construct a new rule for derivations:
(4°) If eval(v)) = eval(vy;) then w; = w; is an equation.
This gives us the following definition:

DEFINITION -- A derivation’ i{s a derivation (section 3.2) with rule

(4°) substituted for rule (4). The last equation is said to be

d ‘e Two constants w; and wy & W_. are equal in if
1 2 ¢ conceq
and only if the equation w; = w; can be derived’.

Conceq plays the role for implementations that speceq plays for
specifications. Any semantic interpretation that satisfies an implementation
must equate: identical values, values that are equal because the implementing
code of both values has the same meaning, and values that are equal because of

substitution of equal values for the same part of equal values. To be a valid
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semantic interpretation it must be a congruence relation on W, .
LEMMA -- Conceq 1is a congruence relation on W, .

] PROOF -- The proof that speceq 1is a congruence relation (section
3.2) does not use rule (4) of derivation. The other rules for
forming equations in a derivation’ are the same as for a derivation.
Thus, the proof that conceq 1is a congruence relation is identical

to the proof that speceq 1s a congruence relation. §
The semantic interpretation conceq 1is correctly implemented.

LEMMA -- Given an implementation I , its semantic interpretation

conceq 1is correctly implemented by I .

PROOF -~ First we show that conceq defines a mapping R; that
serves as a representation mapping of 1 onto concalg , the
quotient algebra defined by conceq . Let (Tl.....Tn) be a tuple
of concrete types that represent the type S . Define R; on the

restricted set of tuples that represent constants in W. by:

eval(w) = (c‘.....cn) implies

Rx H (cl.oo'.cn) I-‘-> Iv'

for some constant w 6 W. of type S and constants
Cl'uaogcn Of the t”.. Tl.....T . Th. notation "IV'"
stands for the equivalence class of w 1in concalg . We also

require:

Ry(x) = Ry(y) 1if and only {f
eval(w;) = eval(w;)

for some words w; and w,. Ry 1is well-defined, because
wy! = lwyl in concalg whenever eval(w;) = eval(v;) fin

I . For tuples (d),...,d) that do not represent any

constant in W, , the value of R; may be undefined. These
tuples will never occur in practice, and are not significant to
the correctness of R; .

Next, we show that I correctly implements concalg

under the mapping R; . There exists an implementation

diagram:
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Ry Ry
rl X e X T“-..> ‘rl X eee X Tn

for each function f in I . Let w be a constant of type
$ in W, , with representation (cj,...,c} in I . By
definition of R, ,

eval(f(w)) = (c]”,eeeycq”) implies
Ry ¢ (e seensey”) |===> [E(W)ij .

So, the diagram commutes. :_1
4.3. Structure of Semantic Interpretations

Since the semantic interpretation conceq was defined similarly to
speceq , it is no surprise that the relationship of an interpretation
satisfying an i{mplementation (s the same as the relationship of an
interprotation satisfying a specification.

DEFINITION == A semantic interpretation is said to satisfv an
{mplementation {f {t contains (in the set-theoretic sense) the

congruence relation conceq of that implementation.
We can now describe correctness in algebraic terms.

THEOREM == Gi{ven an intuitive data abstraction A , {ts surrogate
semantic {nterpr. ‘on A" and an implementation I with the same
signature; A 1s .oi:actly implemented by I {f and only {f A’

satisfies conceq of I .

PROOF == First, we show that satisfying conceq implies
correctness. By the previous lemma R; 1is a representation mapping
that ensures that conceq 1is correctly implemented by 1 . Define
any representation mapping R, to be the same as R; , except that
it maps onto equivalence classes of A" {instead of conceq . Every
equivalence class of conceq {s contained in an equivalence class

of A" . Seo, every diagram that commutes for R; commutes for

—_—
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Ry
Hext, we show that correctness implies satisfaction of I .

There exists a representation mapping R’ for which every
implementation diagram commutes. Let w,; = w; be an equality in

conceq . Let (cl.....cn) represent w; and (dj,...,d;)
represent v; . Since conceq is correct, [w;| = |wyl. This
means that eval(v)) = eval(w;) . Correctness of A under R’
implies that

R.(Cl..-..cn) & R.(dl.'...dn) .

So, w; =wy; in A" . Therefore, every equality in conceq 1is in
AT

-
' il
—

When is an intuitive data abstraction correctly implemented? Just as
with specifications, one knows that an {mplementation correctly implements a
collection of data abstractions. If the intuitive abstrsction has a
surrogate semantic interpretation that satisfies the implementation, then the

intuitive abstraction (s correctly i{mplemented.

The user of a data abstraction may not require that the implementarion
make as many distinctions between values as it does. In such cases the
{mplementation i{s still correct as long as the appropriate representation
mapping (s used. That (s, the results computed by the implementation must be
interpreted by a representation mapping that maps onto the surrogate semantic

interpretation of the intuitive data abstraction.

For example, a data abstraction that requires five distinct values of a
sort might be correctly {mplemented by an implementation that can produce ten
distinct values of that sort. However, the ten values must be interpreted in
such a way that every operation on the interpreted values behaves as the five
values would behave. The commutativity of the implementation diagram captures
this {dea precisely. Note that there may not be any interpretation of the ten
values that behaves correctly. The existence of such an interpretation is
only guaranteed when the intuitive abstraction satisfies the semantic

interpretation conceq of the implementation.

As was the case with specification, we obtain a characterization of all
correctly implemented data abstractions.
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THEOREM = The collection of data abstractions that are correctly
{mplemented by an implementation form a complete sublattice of L, .
We denote the sublattice L, .

PROOF -- This proof is identical to the proof that L, 1is a
complete sublattice of L, (section 3.3), except that the congruence

relations {n L, all contain conceq {instead of wspeceq . s

4.4, Example

Fig. 4.2 depicts the lattice Ly of the List data abstraction
{mplementation i{n Fig. 4.1. The semantic interpretation conceq is
represented by the box at the bottom of the lattice. Under this
{nterpretation there are three distinct values of type List:
"Conc(Makelist (One) ,Makelist(One)),"

"Conc(Conc{Makelist (One) ,Makelist(One)),Makelist(One)),”" and "EmptyL," which

40

is equal to "Makelist(One)." (The code for "EmptyL" does not create an empty

list, as {ts name {mplies, but & list with one element in {t.)

B —
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(A,B,C,D)

(A,B) (C) (D)
(C,D) (A,8,D) (A,B,Q)

(C) .
(D)
(A,B)

EmptylL

Makeiist (One)

Conc (Makeiist (One) ,Makeiist (One))
Conci(Conc(Makeiist (One) ,Makeiist (One)), Makeiist (One))

O Nw>
o

Figure 4.2 The lattice L; for List
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The semantic interpretation represented by the box containing
"(A,8),(C,D)" only distinguishes between two values of List, instead of three.
It does not distinguish between "Conc(Makelist(One),Makelist(One))" and
"Conc(Conc(Makelist(One) ,Makelist(One)),Makelist(One))." This interpretation
satisfies conceq , because all of the distinctions it makes are made by

conceq .

Just as L. is small, containing five semantic interpretations, Lt is
small, also containing five interpretations. However, the interpretations in
Ly are not all the same as those i{n Ly . All words of the form:
Conc(...Conc(EmptylL, EmptyL),...Emptyl)
are equal to
Conc (Conc(EmptylL, EmptyL),EmptylL)
in conceq . Furthermore, they are all equal to
Conc(Conc(Makelist(One) ,Makelist (One)),Makelist(One)) .
This (s certainly not the case in speceq . Similarly,
Conc (Emptyl,Makelist(One)) and Makelist(One) ,

vhich are equal in speceq are not equal in conceq .

Just as a data abstraction can be under-specified or over-specified, it
can be under-implemented or over-implemented. Under-implemented abstractions
are not contained in the lattice L; of the implementation. The
implementation {s incorrect, because it fails to distinguish between values
that can be distinguished in the intuitive abstraction. An over-implemented
data abstraction is correctly implemented, but {t is not equal to the
{nterpretation conceq of that implementation. There exists an
{mplementation wvhose interpretation conceq’ 1is equal to the over-implemented
abstraction and wvhose lattice L" is smaller than the original lattice Lt .
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5. Intersection of Implementation and Specification

Given a specification and an intuitive data abstraction one can determine
whether the intuitive abstrac%ion is correctly specified by the specification:
it is {f the i{ntuitive abstraction satisfies the specification; otherwise, it
i{s not, In the same way one can determine whether an implementation correctly
{mplements an intuitive data abstraction. Both of these determinations may bde
difficult to make, because the intuitive abstraction one has in mind is not
written down. Comparing the specification to the implementation should be
easier, Each can be read and analyzed. In the process of comparison one
2ight see {f the intuitive adstraction satisfies either or doth,

Qur view is that specifications and i{mplementations describe collections
of data abstractions, These collections are descridbed by lattices, Lg for
specifications, Lt for implementations, We describe the relationship
between a specification and an {mplementation by the overlap of their
lattices,

THEQREM -- Given a specification S , its lattice of correctly
specified data abstractions L, , an i{mplementation I , and {ts
lattice of correctly i{mplemented data abstractions Ly i the
collection of data abstractions that are correctly specified by S
and correctly {mplemented dy I form a complete sublattice of Lg
an¢ L, . Ve denote the common sublattice SL .

PROQF -- Viewing the lattices Ly and L, as sets, the
intersection of L, and L, is a set of semantic i{nterpretations
that satisfy doth the specification and the {splementation. Let

SL contain just those i{nterpretations. SL (s not empty, because
the congruence relation that equates all elements of each sort
contains every congruence relation. This trivial (nterpretation
satisfies every specification and every {mplementation with the same
signature,

The lattice operations, meet and join, are the same for L.

and L, . These operations apply to every subset of SL . Every
congruence relation in SL contains the speceq and conceq
relations defined by the specification and the implementation. So,
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the meet and join of any subset of SL are in SL ., ‘:3

Given a specification and an implementation of a data abstraction, the
existence of SL guarantees that there is at least one semantic
{nterpretation that satisfies both specification and implementation. If the
intuitive data abstraction one has in mind is in SL then the specification
and implementation are correct: they describe the desired abstraction. If the
{ntuitive data abstraction one has in mind is not in SL , then either the
specification, the implementation or both are incorrect.

5.1, Case Analysis of SL

The size of SL relative to the sizes of L, and L, sheds some light
on the relationship dbetween the specification and the implementation of a data
abstraction, There are four possibilities: L, might be completely contained
{n, but not equal to L, ;i Ly might de completely contained in, but not
equal o Ly ;i Ly and L, might be equal; or L, and L; might not be
related by containment or equality.

When L, 1is completely contained in, but not equal to L. , every
semantic interpretation that satisfies the specification satisfies the
implementation. The sublattice SL 1is equal to Ly . If the intuitive data
abstraction one has in mind satisfles the specification it must satisfy the
implementation., Every data abstraction that satisfies the specification is
over-implemented , because there is some {mplementation whose lattice L ' 1is
ssaller than L, and contains the desired abstraction, There are some data
abstractions that satisfy the implementation (they are in L, ) but do not
satisfy the specification (they are not in Ly ). These are under-specified.
If the intuitive abstraction one has in mind is one of these, the
specification maust be changed, Too sany values are equal in speceq . This
mizht De corrected by removing or rewriting an axiom. If the intuitive
abstraction is not in Ly then both the specification and the iaplementation
sust de changed,
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When Ly 1is completely contained in, but not equal to Lg , every
semantic interpretation that satisfies the implementation satisfies the
specification. In this case SL = L; . Every data abstraction in SL 1is
over-specified. If the intuitive abstraction one has in mind is in SL , both
specification and implementation are correct. If the intuitive abstraction is
in L, but not L; , then only the implementation needs to be changed. Too
many values are equal in conceq . This might be corrected by adding more
tests in the codae or by adding concrete variables to the representation of
some type(s). The nev variables would be used to discriminate between values
of that type. If the intuitive abstraction is not in L then both
specification and implementation aust be changed.

When L, and L, are equal every semantic interpretation that satisfies
the specification satisfies the implementation, and vice versa:

SL =Ly = Ly « The semantic interpretation speceq is also the semantic
interpretation conceq ; it is neither over-specified nor over-implemented.
Every other interpretation in SL 4s both over-specified and
over-implemented. If the intuitive abstraction one has in mind satisfies
either the specification or the implementation then it satisfies the other.

If it does not satisfy one then it does not satisfy the other. This case is
unlikely to occur often in practice, wve feel, because the techniques of
specification and implementation are so different. Specification is more
algebraic in flavor, and makes some distinctions easier (and some distinctions

harder) to express than in {mplementations.

Finally, vhen L, and L, are not equal or related by containment, some
semantic interpretations satisfy the specification and not the implementation,
some interpretations satisfy the implementation and not the specification.
Some interpretations, all those in SL , satisfy both, and are both
over-specified and over-implemented. The example in Fig. 5.1 shows this case
for the List data abstraction, vhose specification and implementation uppear
in Fig.s 3.1 and 4.1, respectively. The semantic interpretation speceq {is
not in Ly . If this vere one’s intended abstraction the implementation would
need to be changed. Similarly, the specification would need to be changed {f
the interpretaion conceq were one’s intended abstraction.

NP IS Ous——




Ardis & Hamlet -- Structure of Specifications and Implementations

(8,C,D)

(A)

¢ e
. :

(<)
(A,8,D)

(D)
(A,B8,C)

(C.D)

EmptyL
Makeiist (One)
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5.2. Maintenance Issues

As ve stated before, under-specification and under-implementation are
instances of incorrect specification and implementation, respectively. Some
values of the data abstraction that can be distinguished intuitively are not
distinguished by the specification or implementation. Over-specification and
over-implementation are not incorrect. The smaller the sublattice SL {s,
the greater the probability is that the intuitive data abstraction has been
under-specified, under-implemented or both. On the other hand, the larger the
sublattice SL {s, the greater the probability is that the specification and

implementation are correct.

In software maintenance one is often required to modify specifications
and implementations to reflect new uses of the software. Robust software
survives many nev applications with little or no required modification. For
data abstractions this quality of robustness {s reflected in the size of the
sublattice SL . The larger the sublattice is, the more interpretations are
allowed. Since short specifications (i.e., few axioms) tend to have large
lattices, over-specification is encouraged by robustness and clarity. Samall
implementations (i.e., few concrete variables and few lines of code), on the
other hand, tend to have small lattices: each distinction {n values of the
abstraction "costs” something, existence of a new variable or existence of a

nev test. For this reason, over-implementation may be discouraged.

It {s our view that specifications and implementations reflect the depth
of understanding of their author. Two different interpretations of a
specification or an implementation may be equally acceptable if their
differences are not important to (that is, not intended by) the author or the
user. In such cases the best description of one’s intentions {s that
collection of interpretations that are acceptable. The lattice structure
provides a handy tool for describing such a collection, and for making further
discriminations vhen they are needed.

———————-
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(as set names). The central question for any particular example of syntax is
whether the semantics of the three ideas correspons: does the collection of
objects and operations a human being was thinking of behave in the way the
implementation's data and procedures behave? Do the mathematical entities
behave as imagined? The questions can never be answered precisely, because
the intuitive abstraction is imprecise. On the other hand, precise comparisog .
of specification and implementation is possible,

This paper presents an algebraic comparison of specifications with
implementations. It is shown that these abstractions always overlap, and have
a common (lattice) structure that is valuable in understanding the
modification of code or specification. However, in dealing with the precise
entities subject to formal analysis, we must not lose sight of the intuition
behind them. Therefore, our definitions are framed in terms of the intuitive
abstraction a person attempted to specify or implement, and we refer the
algebraic ideas to this standard whenever possible.

Section 1 presents the intuitive ideas of an abstraction, its

| implementation, and specification. The ideas are essentially those of
(Hoare 72) and (Guttag 77). Section 2 gives the common formalism to be used
the constrant work algebra. In Sections 3 and 4, this is applied to
specification and implementation. Section 5 explores the overlap between the
ideas, and suggests that the precise connection can shed light on the
imprecise one that is really of interest: the inctuitive abstraction in a
person's mind.
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